Alternative Pulsar Detection Method Utilising Square-law detector noise.
 
1. RF Amplifier + square-law detector  - simple analysis
 
Assume that a square-law detector is perfect and driven with high level RF noise of kT/MHz over a bandwidth B centred on frequency fc ie all video noise is swamped.
k is Boltzmann’s constant and T the effective temperature of the noise.
 
The RF noise can be approximated as collection of small signals of random amplitudes with frequencies 1Hz apart spread across the band, each with random phase.
The squaring process multiplies these by themselves and the low frequency terms generated, become the video noise output.
The noise frequency terms react with themselves individually and with other frequency components.
Those that multiply by themselves produce a DC term and a term at twice the fundamental frequency (cos2(f) =(1+cos(2f)/2)). The 2x high frequency term is way out of the video band and can be ignored
There are B of these dc terms leading to a summed DC output power proportional to (kTB)2. (Note: the input power is kTB; the squaring process squares this too)
Now considering the product of terms 1Hz apart. These lead to noise components at 1Hz and twice the RF band +1Hz. There are 2(B-1) of these terms. The factor 2 arises as there are positive and negative possibilities.
Similarly for noise components, frequency b apart where there are 2(B-b) terms.
When b = B, of course the video noise drops to zero. 
For a flat input RF band B MHz wide, the diode ac output noise power drops linearly with frequency and is given by 2(kT)2(B-b)/Hz
 
2. Case 1 Normal detector, low-pass filter
 
Using the above result, within a small video band Bv, the total AC noise power is (kT)2[2BBv] (as b->0).
When the pulsar is present, the output noise mean power increases by (kTpB)2 so this is the dc power change (signal) to be detected.
The AC noise is dominated by the system noise temperature and is assumed only proportional to Ts. (i.e. ignore the Tp contribution as it is negligible compared to Ts)
With pulsar temperature Tp and system temperature Ts, the pulsar output signal-to-noise ratio is
 
(kTpB)2/(kTs)2(2BBv) = (Tp/Ts)2(B/2Bv)
 
for a unity SNR,
 
Tp = Ts/√(B/2Bv)  - agreeing with the radiometer equation.
 
3. Case 2 SDR sensing Detector noise
 
An SDR bandwidth R, centred on diode output noise frequency F samples noise power given by, 
2(kT)2(B-F)R
The SDR sampling and averaging process is equivalent to the normal detector/low-pass filter case above. 
Applying the Case 1 procedure, we get,
The DC power increase term during pulsar pulse becomes  [4(kTp)2(B-F)R]2
 
The AC noise is again dominated by Ts and becomes, [4(kTs)2(B-F)]22RBv
 
So the output SNR = [4(kTp)2(B-F)R]2 / {[4(kTs)2(B-F)]2 (2RBv)}
 
                               = (Tp/Ts)4 (R/2Bv)
 
If the SNR = 1,
 
Tp = Ts/ 4√(R/2Bv)  
 
Unfortunately this analysis has shown that there is no benefit in exploiting the square-law detector noise bandwidth; it is the analysis RF bandwidth R that defines the effective RF band. This process appears to select and cross multiply components spaced F apart across the input RF bandwidth and ignore others. 
A major loss appears to occur because of the further square root factor, which in effect squares the number of samples needed to reach the sensitivity of the conventional case.
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