Spectrum Techniques for Improving Low SNR Pulsar Detection

Peter East

Background

This is the third article in a series1,2, studying the mechanics of confidently recognizing the presence of a weak pulsar in recordings made with a minimal radio telescope. The system is assumed capable of intercepting pulsar signals that even when integrated are still comparable in amplitude to the receiver noise. The target range for recognition confidence includes period-fold integrated signal-to-noise ratios down to 2.5:1. This third article investigates some spectrum conditioning and harmonic folding schemes and concludes by describing a spectrum-based method capable of improving on the standard period-fold algorithm result by up to 3dB. The improved spectrum analysis described here opens the possibility of testing very weak noise peaks and validating true pulsar acquisition at lower levels than previously considered feasible. The challenge has been to test the science and evolve techniques to open up pulsar hunting to those other than 'high-end' amateurs, although even these might see some benefit in applying the techniques and analyses covered. 

Introduction

Combining spectra of several large pulsar data recordings was suggested by Michiel  Klaassen3 as a method that would allow weak pulsar signals to be added on a daily data collection basis to improve pulsar visibility. This would enable a system that just had enough sensitivity to detect a pulsar but did not have sufficient sensitivity to recover it at adequate signal-to-noise ratio (SNR) from a single record. The argument ran that since the modulus output, after applying Fourier Transform (FT) spectral analysis, removed the pulsar phase information and normalized the spectral lines to appear at DC and at regular harmonic positions in frequency. New records could be summed with later records to enhance detection, providing the observed (topocentric) pulsar period didn't change too much from day-to-day due to the Earth's Doppler variation round its orbit. The combined spectrum moduli could then be frequency or harmonically-folded to detect the pulsar or, alternatively, could be inverse FT'd and folded in time to enhance low SNR pulsar shape recognition. 

The problem with spectrum modulus summing is that the modulus process acts as a secondary/linear detector imposing some signal-to-noise ratio (SNR) degradation, especially at low SNR's.

In a study to improve this situation, the three techniques, non-coherent spectrum summing (the MK method), coherent spectrum summing and multi-period folding were investigated; these all proved useful tools for downsampling recorded data. The second tool  preserves the pulsar period, whereas the third normalizes the pulsar period to a set value allowing daily downsampled records having different topocentric period values to be summed coherently after alignment. 

These processes have been analyzed and modeled and the results presented below.

Finally, the properties of the Fast FT (FFT) were investigated and exploited in Section 6, enabling spectrum summing without the modulus loss, and also gaining 3dB in sensitivity. The benefit of this was not only to significantly improve combined data SNR but also strengthened the recognition process4 of the individual low SNR pulsar candidates.

1. Non-coherent Spectrum Combining

For this analysis, a pulsar with a Gaussian-shaped pulse of 6.5ms half height with a period of 714ms, sampled in 1ms intervals is modeled within a comparable noise background as shown in Figure 1.  
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Figure 1 65536 Point Data Block -  pulse train 714ms period , pulse width 6.5ms

In this case, the data record is divided into blocks, N samples wide, preferably in binary block numbers. In this example, the data is assumed to comprise 8M (8388608) 1ms samples and the block size N = 65536. There are N/P (~91) pulses in each block. Non-coherent block summing is accomplished using the algorithm outlined in Appendix 2.1.

An FT is formed on these N-point blocks and the modulus outputs of all the blocks in the record summed as shown in Figure 2.
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Figure 2 65536 Point Real FT Modulus of Figure 1 Data. Lines spaced  by 91bins

If the data comprises a pulse W wide repeating at a period P buried in Gaussian noise, the spectrum will appear as a group of decaying lines (again with a Gaussian-shaped profile), starting at zero frequency, and spaced at N/P with the power decaying by a half at spectrum number N/πW. In this interval there will be P/πW spectral lines, each line occurring in a single FT bin.

Applying Parseval's theorem for a Real FFT, the identity is approximately, 
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where, a is the data mean amplitude at the zero point, 

and W/√2 is the pulse power half-height

For a Gaussian shaped pulse, the peak spectrum line zero-frequency amplitude factor is given by
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If s is the amplitude of a single pulse in the data record, the amplitude of the first spectral line in the FT output is equal to, as

The power SNR of the FT modulus output of the FT for an input single-period voltage SNR of si from Appendix 1, is given approximately by,
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If we average Q FT blocks (= 88388608/65536 =128), then the final integrated voltage SNR of the first spectral line of the data record FT is,
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There are approximately 2 P/πW significant spectral lines with a mean amplitude of a/2 and if these are folded and integrated, the result of integrating all spectral lines is approximately,
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2. Coherent Spectrum Folding

Incoherent spectrum folding occurs as data is split into N-point blocks un-matched to the pulsar period so that each block spectrum produces semi-randomized vector components so that spectrum summing is only effective at the modulus output.

If on the other hand it is arranged that the pulse start times and positions align in each data block (see Appendix 2.2) then the spectra of all these blocks can be summed vectorially. This has the advantage that spectra summation advances linearly rather than accept the modulus summation loss implied in Equation 3, However the modulus summing loss still occurs in the harmonic fold process, but there is a significant improvement over the non-coherent FT summing, as is evident in Equation 6.
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3. Predicted and Achieved Performance Comparison

Figure 3 compares the expected results of coherent and non-coherent folding of data length 8388608 samples (8M). These are theoretical performances and assume uncluttered Gaussian/Normal noise distributions and exact pulsar data folding. 

In Figure 3, a full 8M data spectrum fold would equal the coherent 65K spectrum sum and fold as plotted in the red curve.

The boxed red and green points result from a pulse simulation with a true Gaussian -Normal background noise distribution, confirming the SNR theory above.
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Figure 3 Output SNR v Data SNR. Comparison of Folding Systems - 8M x 1ms Data.

Green - Standard Period Fold; 

Red - Coherent 65K Spectrum Sum and Fold; 

Magenta - Non coherent 1M Spectrum Sum + Frequency Fold; 

Blue - Non coherent 65K Spectrum Sum +Frequency Fold;

Red dotted line, expected random noise peak level - 3:1.

The vertical red and green lines result from a range of simulated 10:1 SNR pulses, but now using an actual recorded pulsar B0329 data noise background including RFI as shown in Figure 4 below. It is clear that RFI degrades the standard fold response slightly but appears to impose slightly greater degradation on the coherent frequency fold result.

None of the above frequency-fold methods approach the standard period-fold technique, but the modulus detection process severely degrades SNR performance at low SNRs. Between a period-fold SNR of 7.5 to 10, the coherent spectrum fold might be expected to confirm pulsar recognition offering visible spectrum folding SNRs of  between 3:1 to 6:1 

4. Test Measurements

Figure 4 compares the outputs of the non-coherent and coherent spectrum summing algorithms to the same scale. The non-coherent plot is offset by 2 units for clarity. The data consists of recorded data with a superimposed pulsar signal simulation of 20:1 period-folded SNR. It is clear that the non-coherent summing method directly sums RFI signals whereas the coherent summing approach seems to suppress these to a certain extent. More importantly, integrated pulsar harmonic lines are much clearer in coherent case and exhibits amplitude roll-off as Figure 2.
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Figure 4 Comparison of Non-coherent (red) and Coherent (blue) 65K Summed Spectra 

(the first spectral line at bin zero is suppressed to remove any data DC offset)
5. Processing Options for SNR Combining

Conclusions that can be drawn from the analysis summary of Figure 3 are,

a). Standard time folding produces the optimum SNR for a single data record. To successfully combine separate data records, the pulsar pulse phase must be recognized correctly and folded data combined only when the pulse phases between records are aligned (usually to the fold range center). 
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Figure 5 Multi-record Period-Fold Combining

   The SNR slope (green curve in Figure 3) is then increased by the square-root of the number of records combined. The sequence is illustrated in Figure 5.

b). Using the Klaassen method, Figure 6, for best results the spectrum of the whole data record is required and the spectrum modulus is added to the moduli of other data records. This ensures all spectral lines are in phase and combine linearly. The resulting spectrum sum is inverse FT'd and then time-folded as normal. The resulting SNR plot (red curve in Figure 3) is increased again by the square-root of the number of data records, all assumed of equal size. Frequency folding is possible but may be complicated by the large spectrum line spacing and that the lines occupy only a single bin. Non-coherently combining smaller sections of the data records impacts further on the recovered SNR. Modulus-combining 8x1M sections imposes SNR loss, being the difference between the red and magenta curves in Figure 3.
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Figure 6 Multi-record Klaassen Spectrum Combining

   A limitation of this method is that different data files that are not barycentric corrected may sum inefficiently if the topocentric period varies significantly. 

c). With coherent spectrum summing, Figure 7, the data files may be significantly reduced without any loss of information. The example of Figure 3 combines 91x65536 point FT spectra to provide the red curve result. All the data now resting in a 65536 byte file. This raw spectrum file can be inverse FFT'd to produce a data file that can be period folded to produce exactly the same result as period folding the original data file with no loss of information. SNR loss only occurs in the later modulus process.    
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Figure 7 Multi-record Coherent Spectrum Combining
    Following the Klaassen route, when combining several data records, it is necessary to sum the spectra moduli and the either frequency-fold or inverse FT the result followed by period fold. The result will be to increase the red curve SNR by the square-root of the number of records as before. Frequency folding is useful for confirming spectral energy at the expected frequency interval. The output SNR obtained from frequency and period folding in the sum FT moduli path should be closely similar.

Spectrum summing of coherent data blocks maintains all the pulsar information in a reduced format. It is noted that folding inverse FT'd summed spectra produces the same result as period-folding all the data showing that all the record information is preserved.
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Figure 8 Output SNR v Data SNR. Comparison of Folding Systems - 8M x 1ms Data.

Green - Standard Period Fold, Green dash - Single Period Fold, Sum of 2 records; 

Red - Coherent 65K Spectrum Sum and Fold; Red dash - Coherent  Spectrum Sum of 2 Records;  

Magenta - Coherent Spectrum Sum of 4 Records.

Figure 8 shows the expected SNR improvement from combining records using the combining methods above. Note that for a period-folded SNR of 4:1, the spectrum modulus SNR rises from only 1:1 to 2:1 even after combining 4 records. An SNR of 1:1 represents the rms level of the background noise so early confirmation may expected to be difficult. 

If the coherent sum FT is of modest size then there is less necessity for barycentric correction.

6. Improved Synchronized Real Spectrum Approach

In doing the analysis above, it was clear that the weak link, preventing the spectrum approach from achieving the same result as the standard period fold method was the need to combine the vector components by taking the vector modulus. If all the wanted signal could be channeled to either the in-phase or quadrature vector spectrum component, then this could be folded directly and so overcome the modulus loss. This is possible when applying the FFT, but with two strict conditions, firstly that a complete number of waveform cycles occurs in the data window and secondly the waveform phase is adjusted correctly. In this case setting the first pulse to bin zero.

Figure 9 describes the procedure to combine spectrum records in this optimized manner and so avoid the modulus SNR loss. Appendix A3 illustrates the requirements to use the FT algorithm to steer all the candidate pulsar pulse train information to the FT real output without the need to use the modulus method to obtain the vector magnitude. 

The initial process follows the standard single-period fold approach with the aim of identifying the pulsar pulse candidate then trimming the data samples to reset this pulse to the first fold bin.

The next operation sequence is to fold all the trimmed data into a large number of periods. In the examples given, say 65536 bins containing 91 pulsar periods. This normalizes the pulsar period to 720.175842ms and will do so for all separate data records to be combined, obviating the need for day-to-day barycentric correction.
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Figure 9 Optimum Synchronized Real Spectrum Combining
The data now is in the ideal form to send all the pulsar information to the Real FFT output to maximize the SNR. The final stages are to add the discrete record data and either carry out a harmonic fold or inverse FFT the spectrum and perform a normal single period fold as shown in Figure 10 (peak adjusted to range center).
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Figure 10 Comparison of Period Fold raw data (red) and real FFT spectrum data (blue)
The B0329 data used for Figure 10 comparison with normal folding, produced a SNR of 5.4:1 whereas the real spectrum processed data SNR measured 6.8:1, showing a 2dB improvement for this example, so validating the process. It is noted that there is still some correlation between the base noise of the two plots as expected.

Using the guide described, with the enhanced spectrum SNR, it is perfectly feasible to use the data to confirm low SNR pulsar recognition after harmonic folding. This is possible as only a regular pulse train produces the spectrum form shown in Figure 2. Although the spectral lines may not be visible, by suitably adjusting the harmonic fold range the spectral line shape presence may be deduced. (providing an extra validation test to those described in Reference 1. An example is shown in Figure 11, where again, the peak is adjusted to the plot center. Using the raw data as for Figure 10 the processed spectrum is harmonic-folded, firstly with the optimum number of spectral lines included (red: SNR = 6.91, closely agreeing with the period-fold results of Figure 10). Secondly harmonic-folding with the first half the optimum number of lines (blue: SNR = 5.52) and thirdly, the second half of the optimum line number (green: SNR  = 3.57).
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Figure 11 Comparison of Spectrum Harmonic Fold B0329 data 

red: Optimum number of spectral Lines folded

 blue: Half the Optimum Number of Lines Folded

green: Second Half the Optimum Number of Lines Folded
This short evaluation shows that spectral analysis can prove an excellent validator of true pulsar presence. The spectral lines appear exactly where expected and the spectral line roll-off is in line with that predicted in Figure 2. The SNR enhancement observed in both, period folding and harmonic folding is, as predicted, from channeling the pulsar signal to the real FFT output.

7. Discussion and Conclusions 

The secondary detection (modulus) process in an FFT severely degrades the efficiency of frequency-folding at low SNR levels and so is a weak confirmation of pulsar recognition in pulsar spectrum analysis. When frequency/harmonic folding, it must be borne in mind that the spectral lines occupy a single FFT bin so care must be taken in choosing the folding bin number to ensure that all spectral components sum accurately in the fold bins.

Non-coherent data combining inefficiently uses the FFT modulus function for both data combining and harmonic folding and is only useful for very large FFT spectrum records containing a single period fold pulsar with an output SNR exceeding 10:1.

The coherent data record is better for data block combing and data reduction without loss, but also remains inefficient for harmonic folding.

The recommended method is the data synchronized approach of Section 6, which does not involve the FFT modulus function but conditions the data suitable for funneling the pulsar relevant data to the real/in-phase or imaginary/quadrature FFT channels. This approach not only proves the presence of a pulse train but can theoretically produce a better SNR than the usual single-period fold algorithm.    

It is concluded that the improved SNR of optimum spectrum folding can confirm the pulsar presence in a single record taken in a typically RFI-cluttered environment at a lower level than the standard fold algorithm. Also, understanding the pulse spectrum properties can prove a valuable aid to low SNR pulsar validation. Since, if a pulsar signal is present of modest SNR, then by folding the spectral lines at the correct spacing, knowing that the peak should occur at the fold range extremities, it is possible to deduce the presence of  a pulsar. 

By adding a fixed half-range offset, the pulsar test point can be aligned to the fold range center (see Figure 10) for presentation purposes.

Finally, combining recorded spectra as suggested by Michiel Klaassen with either frequency or inverse FFT period-folding is a viable technique to increasing observed pulsar SNR to improve and confirm detection.
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Appendix 1 FFT Modulus SNR

An approximation to the FFT output SNR as a function of the bin SNR can be derived from reviewing the vector signal and noise relationships, Figure A1
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Figure A1

The mean modulus component is obtained by integrating θ over 2π to leave 
[image: image18.wmf]2

2

n

s

+

 or just √n2 or n, with no signal present.

The modulus output power SNR can now be written,
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(A1)

A more rigorous derivation involves numerical evaluation of the Rician distribution involving the zero order modified Bessel function but this approximate solution has proved accurate to better than 1dB over all values of SNR.

Appendix 2 Data Summing Algorithms

Outline programs for summing data blocks are listed below.

1.Non-Coherent Spectrum Summing
[image: image25.emf] 
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The code for non-coherent N-sample block spectra summing of Q blocks from data file, Dat is listed in Figure A2

Figure A2 Non-coherent Block Spectra Summing
2. Coherent Spectrum Summing
For coherent spectra summing, consecutive synchronized blocks are ensured by the second and third code lines listed in Figure A3. N is the number of bins in a block, Q is the number of blocks and P the pulsar period.
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Figure A3 Coherent Block Spectra Summing 
In the former case, by carrying out an inverse FFT, the resulting waveform could be single period-folded to recover identical results to single-period folding the original data regardless of the number of FFT points/bins chosen. 

3. Multi-Period Folding
Figure A4 includes the folding algorithm, where N is the number of fold bins, Q the number of pulsar periods in a folded block and P the pulsar period. For normal folding, 

Q  = 1. Q = 2, or sometimes 3 is useful for checking that a candidate pulse really is part of a pulse train, a key property of a true pulsar.
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Figure A4 Multi-period Folding
The value of N is chosen to get a reasonable number of pulsar periods included to ensure adequate frequency resolution.

Appendix 3 Exploiting FFT Output Properties
The 64K sample data series in Figure 1, comprising 91 x 6.5ms Gaussian-shaped pulses with 714ms pulse repetition interval (PRI) in random noise when operated on by the Real 64K FFT algorithm produces the complex outputs shown in Figure A5. The red plot is the Real 32K spectrum output and the blue plot overlaid represents the Orthogonal (or Imaginary) spectrum output.


[image: image21.png]o S P 1310 1s10" 20510° 24610° 20720° 320"

FFT bin Number




Figure A5 General Real FFT Real and Complex outputs.

As Figure 2 shows, a typical pulse train produces a series of harmonically related spectral lines, spaced in this case ~91 ( = 65536/714) bins apart. The spectral lines are modulated in amplitude controlled by the pulse width and shape. In this case the power drops to half at bin number 92x714/6.5π.

In general, depending upon the pulse train start position/phase in time and whether or not the pulse train interval is an integral factor of the record duration, power is shared between the real and orthogonal components. For this reason it is usual to take the vector sum/modulus (= square root of the sum of the squares of the real and imaginary parts) of these components to get the output shown in Figure A6. Note that all the output is positive and the base noise exhibits a positive mean value
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Figure A6 Conventional FFT modulus output
However, if the constraints of an integral number of pulses in the time series AND the first pulse starts at time zero, then the Real FFT complex outputs follow the pattern of Figure A7. This shows that all the FFT power is channeled to the Real FFT output and none to the Orthogonal output - just half the noise. The base noise has a mean of zero and has equal positive and negative distributions
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Figure A7 Synchronized pulse train

Now, by inverse FFT'ing just the Real part, the resulting time series has its SNR theoretically improved by 3dB. More importantly, the Real spectrum now contains all the pulse information and no longer suffers the SNR degradation caused by enforcing the modulus function.













The voltage complex vector resultant (modulus) is,





� EMBED Equation.3  ���		
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