RTL SDR RA Data Processing Tools

Introduction

Command line programs described in this note are updated versions previous Radio Astronomy software tools written to process .bin data files generated by the RTL2832U SDR. They are suitable for processing very large data files sized up to and beyond 2GB. RTL data collection uses the Osmocom rtl_sdr tools(1)*. Some of these have been modified to accommodate large files and to disable ‘dithering’ to improve phase tracking between RTL units.

1. Summary Descriptions

Programs are written in ‘C’ code and may be compiled for MS Windows/DOS (.exe) and Linux in 32 or 64 bit executable versions. In the following tables short program descriptions are grouped depending on application. Detailed running instructions are presented in following Sections.

Set 1 - General Purpose Tools

	Program
	Function
	Command Line

	amp_sts2

	Takes rtl_sdr.exe binary file and outputs a text file of the SDR ADC data distribution. Output ADC range is, -128 to +128
	amp_sts2 <infile> <outfile>

	bin_txtr2

	Takes rtl_sdr.exe(1) binary file and outputs a text file of the SDR ADC I and Q data. .The data range is from the beginning of the block number specified to the end of the second block number specified.

Output file: Sample Number, I Data,Q Data.
	bin_txtr2 <infile> <outfile> <start number of 8192 sample data blocks><end number of 8192 sample data blocks>

	bin_txt_sam

	Takes rtl_sdr(1) binary file and outputs a text file of the SDR ADC I and Q data. The IQ data is downsampled by the factor N.
	bin_txt_sam <infile> <outfile> <N downsamples I/Q pairs by N>

	filetrim

	For RTL .bin data files. Trims specified number of bytes from the start and/or the end of the input file. Outputs shortened .bin files
	filetrim <datfile.bin> <No. start bytes cut> < No. end bytes cut>

	pdetect2

	Software, downsampling/square-law detector function. Outputs text file of the video integrated detected power - time response. It integrates blocks proportional to the inverse of the video band figure. The divisor figure shortens the analysed file to this factor.
	pdetect2 <datfile.bin> <outfile.txt> < RTL data rate (MHz)> <Video Band (kHz)> <File divisor>

	rn_prgat

	Run the specified program +any command line entries at the set time using the PC clock. With no command line, running indicates current internal time setting.
	run_prgat<”pogram.exe + command line”><hr min sec>

	rtl_sdr22r
	Runs the rtl_sdr program version that handles very large data files and with the -N command stops 'dithering' necessary for multiple SDR phase tracking.
	rtl_sdr22r -f <freq> –g <gain> –s <sample rate> –n <No. samples> -N<no dithering>

	rtl_sdr22r_dual

*GM Gancio
	Runs the rtl_sdr program in two parallel threads, detects SDRs and generates two bin files from two RTL SDRs
	rtl_sdr22r_dual -f <freq1> –u <freq2> –g <gain1> –q <gain2> –s <sample rate> –n <No. samples> -N <no dithering>

Set 2- Hydrogen Line Analysis Programs

	Program
	Function
	Command Line

	rafft22
	Takes rtl_sdr.exe(1) binary file applies the FFT algorithm to data blocks, and averages these over the input data length and outputs a text file.
	rafft22 <infile> <outfile> <Number of FFT points>

	run_rtlat2

	Uses PC clock to run the rtl_sdr(1) program at a set time, generates a bin file which is then processed with the FFT algorithm to output spectrum averaged text file. With no command line, running indicates current internal time setting. <hr offset> adjusts this.
	run_rtlat2<”rtl_sdr22 data.bin + command line”>< Number of FFT points><hr min sec><hr offset (0)>

Set 3 – Pulsar Data Processing Tools
	Program
	Function
	Command Line

	rapulsar2

	For RTL .bin data files or bin files pre-processed by de-dispers2Co or RFImit2. Integrates/folds the IQ power data synchronously on a timebase set at the pulsar period. Output text file describes the averaged pulse shape at an arbitrary initial phase.
	rapulsar2 <datfile.bin> <outfile.txt> < RTL data rate (MHz)> <No. data points> <Pulsar period (ms)>

	rapulsan2

	As above, but the extra command shortens the analysed file by the divisor factor.
	rapulsan2 <datfile.bin> <outfile.txt> < RTL data rate (MHz)> <No. data points> <Pulsar period (ms)><File divisor>

	de-dispers22co

	For RTL .bin data files. Based on the pulsar DM and RF band centre frequency takes recorded .bin files, de-disperses the data and outputs de-dispersed .bin files suitable for folding with rapulsar2. The output is closely in-phase with the input data file. DM; +, normal; -, low sideband rx; 0, no change.
	de-dispers22co <datfile.bin> <outfile.bin> < RTL data rate (MHz)> <FFT block points> <RF centre (MHz)> <±DM>

	de-dispers2

	For RTL .bin data files. Based on the pulsar DM and RF band centre frequency takes recorded .bin files, de-disperses the data and outputs de-dispersed .txt files suitable for folding with rapulsar2_avg2. The output is closely in-phase with the input data file. DM; +, normal; -, low sideband rx; 0, no change.
	de-dispers2 <datfile.bin> <outfile.txt> < RTL data rate (MHz)> <FFT block points> <RF centre (MHz)> <±DM>

	RFImit22

	For blanking RFI from .bin data files. Reads files, takes FFT, blanks bins as directed by cal file, inverts FFT and outputs averaged spectrum and RFI-removed .bin files suitable for folding with rapulsar2. The output is in-phase with the input data file.
	RFImit22 <datfile.bin> <outfile.bin> < spectout.txt> <calfile.txt> <clock rate (MHz)> <FFT points>

	pdetfilt2

	For blanking video interference from pdetect2 .txt data files. Reads files, takes FFT, blanks bins as directed by cal file, inverts FFT and outputs averaged spectrum and RFI-removed .txt files suitable for folding with rapulsar2_avg2. The output is in-phase with the input data file.
	pdetfilt2 <datfile.txt> <outfile.txt> <spectout.txt> <calfile.txt> <FFT points>

	filesum2
	Sums four pdetect20.txt files with weighting factors specified by gain entries in the command line. Intended for Quad RTL receiver measurements. Prints gains, mean and rms level of output data.
	filesum2 <infile1> <infile2> <infile3> <infile4> < gain1> <gain2> <gain3> <gain4> <outfile>

	thresh2
	Thresholds (zeroes interference) above the set level (mean+5xrms - the amplitudes derived in filesum2) and rebuilds output text file suitable for rapulsar2_avg2 folding.
	thresh2 <infile> <mean> <max> <outfile>

	pafft22

	Modulation spectrum. Inputs .bin file and calculates/averages FFT spectra formed from square-law detected/demodulated (pulsar) data. Outputs averaged spectrum text file.
	pafft22 <datfile.bin> <outfile.txt> < RTL clock rate (MHz)> <Video Band (kHz)> <FFT size>

	pdetfft2
	Takes pdetect2 .txt files and averages FFTs along its duration. Spectrum extent depends on pdetect2 downsample video value.
	pdetfft2 <datfile.txt> <outfile.txt> <FFT points>

	rapulsar2_avg2

	For downsampled/detected .txt files. (from pdetect2, de-dispers2) Integrates scalar power data synchronously on a timebase set at or very near to the pulsar period. Output text file describes the averaged pulse shape at an arbitrary initial phase.
	rapulsar2_avg2 <datfile.txt> <outfile.txt> < downsampled data rate (MHz)> <No. data points> <Pulsar period (ms)>

	rapulsar3c_plot
	As rapulsar2 but partitions .bin files and organises output data to support a rolling data display.
	rapulsar3c_plot

<file.bin> <out.txt > <clockMHz> <No. bins> <pulsar period ms> <No. periods in partition>

Set 4 – Interferometry Tools

	Program
	Function
	Command Line

	cor_tim2_n

	Cross-correlates two .bin files using a section equal to the sample length over a file range equal to the specified size of a block. Repeats for n blocks. The terminal display indicates the position of any correlation peak together with the offset between the files. Output text file contains the summary.
	cor_tim2_n <infile1> <infile2> <outfile> <sample length> < block size><No. of i/q blocks tested>

	cor_tim2_nv

	Cross-correlates two i/q .txt files <from bin_txtr2 for example) using a section equal to the sample length over a file range equal to the specified size of a block. Repeats for n blocks. The terminal display indicates the position of any correlation peak together with the offset between the files. Output text file contains the summary.
	cor_tim2_n <infile1> <infile2> <outfile> <sample length> < block size><No. of i/q blocks tested>

	f_align2

	Using the offset derived from cor_tim, f_align2 cuts the uncorrelated section from the relevant file to form two time synchronised files equal in length to the number if IQ blocks specified.
	f_align2 <file_In> <file_Out> <No of 8192 IQ blocks> <Align Address>

	rot_vec
	Modifies iq components of rtl_sdr .bin files as required to effectively rotate the equivalent vector by 'phase' radians. The final command line digit defines fixed phase shift or a linearly changing phase (frequency) increment.
	rot_vec <file_In> <file_Out> <phase> <0-fixed, 1 linear increment>

2. Running the Tools - Windows

2.1 Example 1 - Windows (.exe)
1. Copy 'command.com' from ‘Windows/system32’ directory, rafft22.exe from the link – Reference (16) and your Osmocom ‘rtl_sdr’(1) recorded .bin files to your working directory.
2. Open 'command.com', change the directory to your working directory if required and type in:-
rafft22 <infile.bin> <outfile.txt> 256
where, 'infile.bin ' is your recorded .bin file 'outfile.txt' is any name you choose and could end in .txt as it is a text file. The final command line entry '256' is the number of FFT points you choose. This must be a power of 2.
3. Open the text file in 'notepad', 'select all', 'copy' and 'paste' in 'Excel' and follow Excel instructions to produce a graphic display. The file generates 3 columns – FFT bin Number; FFT bin value, and Number of binfile data per FFT bin.
2.2 Example 2 - Linux

Open a Linux terminal, change the directory to the working directory containing the programs and data files.

In this example, two SDRs are initiated simultaneously to record digitised data for a set time. The 'hr' offset command entry adjusts for hour differences from GMT.

To achieve simultaneous recording, two terminal windows, one for each SDR, run a copy of the control software that is set with the desired recording parameters.

Typical control software commands to run two SDRs (-d 0 and -d 1) on a single computer are,

Terminal 1>

./rn_rtlat2 “./rtl_sdr dat0.bin –f 1420e6 –d 0 –g 49 –n 100e6” 256 14 24 00 1

Terminal 2>

./rn_rtlat2 “./rtl_sdr dat1.bin –f 1420e6 –d 1 –g 49 –n 100e6” 256 14 24 00 1

These are run in two separate Terminal windows set to the working directory, which also contains the Osmocom rtl_sdr tools.

These commands start recording data from both SDRs at 14hr 24m 0s using the Osmocom rtl_sdr program. In this example, on collection of 100 million sample IQ pairs, the data is analysed in 256 point blocks using a FFT algorithm and outputs averaged spectrum text files dat0.txt and dat1.txt as well as the recording the data files.

Inputting these data text files into Excel or mathcad software, the temperature graphs can be produced indicating H-Line characteristics.
3. Compiling Tools from Source Code

1. Install gcc C-compiler

2. Type:

gcc prognam.c -o prognam -lm -D_FILE_OFFSET_BITS=64

-DVERBOSE_MODE
4. Tool Description

4.1 General Purpose Tools

4.1.1 AMP_STS2 - RTL SDR ADC signal amplitude distribution

Tests the RTL ADC working dynamic range to ensure sufficient RF gain to exercise a sensible range of ADC operation without exceeding the ± limits.

This tool tests RTL SDR operating dynamic range and forms the signal data distribution over the (128, 8-bit ADC range. The output text data plot can be viewed in an Excel chart.

The format is,

amp_sts2 <binfile_In> <Textfile_Out>

Text files can be very large but a typical example is,

amp_sts2 aa01a.bin aa01.txt

This produces a text file formatted with ADC bin number and bin use.

4.1.2 BIN_TXTR2 - binary file to text format conversion

This tool converts RTL binary IQ data to text format so that data samples can be processed/viewed using Excel or Math CAD software.

The format is,

bin_txtr2 <binfile_In> <Textfile_Out> <No. of 8192 IQ blocks-Start> < No. of 8192 IQ blocks - End>

8192 IQ blocks represents 16384 clock samples and so text files can be very large.

A typical example is starting at the beginning of the data file and ending after 512x16384 bytes,

bin_txtr2 aa01a.bin aa01.txt 0 512

This produces two-column text files formatted with sample number, Q data, I data; about 94MB in size.

4.1.3 BIN_TXTR_SAM - binary file to text format conversion

This tool converts RTL binary IQ data to text format so that data samples can be processed/viewed using Excel or Math CAD software. The IQ data is downsampled by the command line factor N. Useful for examining data trends in long binary data files.
The format is,

bin_txt_sam <infile.bin> <outfile.txt> <N downsamples I/Q pairs by N>

This produces two-column text files formatted with sample number, Q data, I data.

4.1.4 FILETRIM - binary file length trimming

Adjusts the lengths of RTL .bin files, by cutting the command number start No. of bytes from the file start and command number end No. of bytes from the end of the input file respectively and outputs a binary file of rtlsdr .bin-compatible data.
The format is:

 filetrim <binfile_in> <binfile_out> <start no. of bytes> <end no. of bytes>
Number of bytes is input in decimal integer form.

4.1.5 PDETECT2 - video detection conversion

This software processes RTL .bin data collected with an RTL SDR receiver system.

It acts as a software, square-law detector by averaging the amplitudes of IQ data dependent upon the Video bandwidth specified in the command line. The result is a text file that can be viewed with Excel or mathcad programs showing the video integrated detected power - time response. The process averagess data in blocks proportional to the inverse of the video band figure.

The RTL clock/data rate – Video band ratio defines the downsampling factor.

A typical command line is....

pdetect2 <datfile.bin> <outfile.txt> < RTL data rate (MHz)> <Video Band (kHz)>

<File divisor>
The file divisor integer shortens the processed file by the file divisor factor. The output text file lists averaged data in decimal form.

4.1.6 RN_PRGAT - run specified program at a specified time

Runs any program including command line parameters at the PC time as specified.
The format is:

rn_prgat <"program.exe"> < hr min sec>
Run without any command line it indicates the current PC time. The program and command parameters are entered within double quotation marks as indicated.

4.2 H-Line Analysis Tools

4.2.1 RAFFT22 – H-Line spectrum averaging
This program breaks the data file into the specified size of blocks, performs a complex FFT on each block to define the spectrum, then averages the spectra of all blocks before outputting a text file of the averaged and enhanced sensitivity result.

The format is,

rafft22 <binfile in> <Textfile out> <No. of block FFT bins/points>

To perform and average 256-point FFT spectra on an RTL .bin file and place it in an output text file. Number of FFT bins must be a power of 2. An example command line is,

rafft22.exe capture1.bin capture1.txt 256
The output capture1.txt file stored in the current directory can be input to Excel or any math CAD program to compare pairs of load and antenna files to view hydrogen line spectrum, for example. The output file contains 2 columns, the bin number, and the FFT averaged bin data.

4.2.2 RUN_RTLAT2 - run specified program at a specified time

Runs any program including command line parameters at the PC time as specified.
The command line format is:

run_rtlat2 <"rtl_sdr data.bin + other command parameters"><No. FFT points> < hr min sec start time>
Number of FFT bins must be a power of 2.

Run without any command line it indicates the current PC time. The program and command parameters are entered within double quotation marks as indicated.

4.3 Pulsar Analysis

4.3.1 RAPULSAR2 – folding/synchronous period integration

This software processes RTL .bin data collected with an RTL SDR receiver system.

It integrates the IQ power data synchronously on a timebase set at or very near to the pulsar period. The result is a text file that can be viewed with Excel or mathcad programs showing the integrated pulse power shape at some arbitrary phase dependent on the initial file timing conditions. The text output file contains 3 columns of bin number, folded data and number of samples averaged per bin.

A typical command line is....

rapulsar2 <datfile.bin> <outfile.txt> < RTL data rate (MHz)> <No. data points> <Pulsar period (ms)>

For large files when adjusting the pulsar period, a smaller subset can be inspected using the modified program, rapulsan2 following.

4.3.2 RAPULSAN2 - synchronous pulse integration, with file speed-up divisor

A typical command line is....

rapulsan2 <datfile.bin> <outfile.txt> < RTL data rate (MHz)> <No. data points> <Pulsar period (ms)> <File divisor>

As rapulsar2 but the file divisor integer shortens the processed file by the file divisor factor.

4.3.3 DE-DISPERS2CO - de-dispersion tool for .bin files, with .bin output

Accepts rtlsdr .bin files, takes N-point FFT, de-disperses frequency components in time as calculated internally from the dispersion measure (DM) delay formula, takes inverse FFT, outputs de-dispersed binary data in rtl_sdr .bin format.

Command line format:

de-dispers2Co <infile> <outfile> <clock rate (MHz) <fft points><RF centre(MHz)> <dispersion measure(DM)>

Outputs a .bin file of dispersion corrected sampled data at the initial clock rate, slightly smaller in size due to incomplete delayed sets, but in time synchronism with the original input file.

DM; +, normal; or -, for band inverting/low sideband receivers; 0, no change.

4.3.4 DE-DISPERS2 - de-dispersion tool for .bin files with .txt video output

For RTL .bin data files. Based on the pulsar DM and RF band centre frequency takes recorded .bin files, de-disperses the data using a linear approximation to the DM-frequency function, then outputs de-dispersed video amplitude data .txt files suitable for folding with rapulsar2_avg2. The output pulse is closely in-phase with the input data. DM; +, normal; -,low sideband rx; 0, no change. The output clock rate is dependent upon the FFT length chosen and is indicated on the screen at program completion.

Command line format:

de-dispers2 <infile.bin> <outfile.txt> <clock rate (MHz) <fft points><RF centre(MHz)> <dispersion measure(DM)>

Outputs a .txt file of dispersion corrected sampled data at the specified clock rate; pulse phase in time synchronism with the original input file.

4.3.5 RFIMIT22 - RFI line blanking

For blanking RFI from bin data files. Reads bin files, takes FFT, blanks bins as directed by cal.txt file, inverts FFT and outputs averaged spectrum and RFI-removed in .bin file format suitable for folding with rapulsar2. The output is in-phase with the input data file.

Command line format:

rfimit22 <datfile.bin> <outfile.bin> < spectout.txt> <calfile.txt> <clock rate (MHz)>
<FFT points>

Outputs a .bin file of filtered data at the initial clock rate, but in time synchronism with the original input file. The spectout.txt text file includes the modified spectrum data. The calfile.txt file is set by the user and comprises a single column text file; equal in length to the number of FFT bins selected; enter a zero, '0', to blank the bin line and '1' to pass the spectrum bin line unblanked. FFT lengths must be in powers of 2. Excel is useful for setting up the calfile for FFT’s up to 65536 and also for inspecting the spectout file to identify RFI spurs for zeroing.

4.3.6 PDETFILT2 - video RFI line blanking

For blanking video interference lines from .txt data files from pdetect2 or pafft22 for example.

Reads files, takes FFT, blanks bins as directed by calfile.txt file, inverts FFT and outputs averaged spectrum and RFI-removed in .txt file format suitable for folding with rapulsar2_avg2. The output is in phase with the input data file.

Command line format:

pdetfilt2 <datfile.txt> <outfile.txt> <spectout.txt> <calfile.txt> <FFT points>

Outputs a .txt file of downsampled data at the video clock rate. The spectout.txt text file contains the final spectrum data. The calfile.txt file is set by the user and comprises a single column text file; equal in length to the number of FFT bins, enter a zero, '0', to blank the bin line and '1' to pass the spectrum bin line unblanked. Again, Excel is useful for setting up the calfile.

4.3.7 FILESUM – sums 4 video files

Sums four pdetect20.txt files with weighting factors specified by gain entries in the command line. Intended for Quad RTL receiver measurements.

filesum2 <infile1.txt> <infile2.txt> <infile3.txt> <infile4.txt> < gain1> <gain2> <gain3> <gain4> <outfile.txt>
Outputs a .txt file of the sum of the input files and prints on screen gains, mean and rms level of output data.
4.3.8 THRESH2 – blanks video spikes
Thresholds (zeroes interference to the ‘mean’ value) above the set level (mean+5 x rms - the amplitudes derived in filesum2) and rebuilds output text file suitable for rapulsar2_avg2 folding. Example…

thresh2 <infile.txt> <mean> <max> <outfile.txt>

4.3.9 PAFFT22 - video spectrum averager
This software processes RTL .bin data collected with an RTL SDR receiver system.

It calculates and averages FFT spectra formed from square-law detected data in a text file, as specified in the command line. The resulting text file can be viewed with Excel or mathcad programs showing the de-modulated pulsar pulse spectrum, from which pulsar rotation rate harmonics may be identified and the rotation rate/period can be calculated.

The period information can then be input to RAPULSAR2 to seed accurate timing estimation.

The format is,

pafft22 <datfile.bin> <outfile.txt> < RTL data rate (MHz)> <Video Band (kHz)><FFT size>

To perform and average 256-point FFT spectra, an example command line is,

pafft22.exe capture1.bin capture1.txt 256
The output capture1.txt file stored in the current directory can be input to Excel or any math CAD program to compare pairs of load and antenna files to view the pulsar pulse rate spectrum.

Michiel’s Method for detecting weak pulsars using small aperture systems, collects many such spectrum text files and averages these in an effort to gain more sensitivity. The final spectrum obtained is then inverse FFT’d to recover the pulsar pulse train

4.3.10 PDETFFT2 - video spectrum averager
Takes pdetect2 .txt files and averages FFTs along its duration. Spectrum extent depends on pdetect2 downsample video value.
pdetfft2 <datfile.txt> <outfile.txt> <FFT points>

This program performs a similar function to pafft22, but using previously downsampled video data.

4.3.11 RAPULSAR2_AVG2 - video folding
For downsampled/detected .txt files. (from pdetect, de-dispers2). Integrates scalar power data synchronously on a timebase set at or very near to the pulsar period.

Command format:

rapulsar2_avg2 <datfile.txt> <outfile.txt> < downsampled data rate (MHz)> <No. data points> <Pulsar period (ms)>
Output text file describes the averaged pulse shape at an arbitrary initial phase. Note the downsample rate specified in pdetect2 or de-dispers2 is here entered in MHz.

This program performs a similar function to rapulsar22, but using previously downsampled video data.

4.3.12 RAPULSAR3c_PLOT - block folding program for rolling display
Takes .bin files and organises output data to support a rolling data display.

Command format:

rapulsar3b_plot <file.bin> <out.txt > <clock MHz> <No. folding bins> <pulsar period ms> <No. periods>

Output text file is in multiple rows equal in length to the number of folding bins. Each row indicates the average of the No. of periods specified in the command line. The number of rows depends upon the total number of pulsar periods contained in the file divided by the No. of periods/row specified.
4.4 Interferometry

4.4.1 COR_TIM2 - file time offset correlator
This program tests the correlation between two near identical files but offset in time due to lack of synchronous recording of interferometer channels, for example. I and Q sample components are combined and the vector amplitude correlated with that of the second file. The command terminal presentation indicates the offset between files. This offset can be corrected using the f_align program described below.

Format:- cor_tim2 <infile1> <infile2> <outfile> <sample length> <No 8192 IQ blocks>
The sample length figure is chosen to restrict time of the correlation process as is the number of 8192 IQ blocks processed.

Example: cor_tim2 file1.bin file2.bin out.txt 512 4
A typical command line and response is shown in Figure A1.

~/Desktop/Data > ./cor_tim2 aa01.bin aa02.bin ffo.txt 512 8

No. Input Bytes = 4000000 No. of IQ Samples=65536

Block
Sample Corr
 Offset Corr Offset

Size
Width
 Peak1 1 on 2 Peak2 2 on 1

8192
 512
 0.210 -255 0.183 -4675

No IQ amplitudes cross-correlated: = 7679

8192
 512
 0.225 3216 0.682 8013

No IQ amplitudes cross-correlated: = 15871

8192
 512
 0.225 3216 0.682 8013

No IQ amplitudes cross-correlated: = 24063

8192
512
 0.225 3216 0.682 8013

No IQ amplitudes cross-correlated: = 32255

8192
512
 0.225 3216 0.682 8013

No IQ amplitudes cross-correlated: = 40447

8192
512
 0.225 3216 0.682 8013

No IQ amplitudes cross-correlated: = 48639

8192
512
 0.225 3216 0.682 8013

No IQ amplitudes cross-correlated: = 56831

8192
512
 0.225 3216 0.682 8013

No IQ amplitudes cross-correlated: = 65023

Infile1=aa01.bin Infile2=aa02.bin Outfile=ffo.txt No Samples=512

Figure A1 COR_TIM2 Response - Raw data files

Perfect correlation with data clock alignment, the correlation peak is unity.

This example shows a correlation of peak of 0.682, comparing a sample block of 512 of file 2 located on file 1, 8013 samples later.

Random noise peaks around the 0.2 are visible, but the true correlation peak or adjacent peaks are normally more than double this level.

A requirement is for the calibration noise source to dominate over system noise.

To avoid possible RTL switch on distortion at the file start, the software ignores the first 7000 IQ pairs.

4.4.2 F_ALIGN2 - file alignment and length matching

The command format is:-
f_align2 <file_In> <file_Out> <No of 8192 IQ blocks> <Align Address>

For the files in Figure A1, we need to determine the alignment address and file size (number of 8192 IQ blocks).

For a 4000000byte file, in this example, the number of useable 8192 IQ data blocks is given by, Int(4000000-2(7000+8013))/2/8192 ~ 242 complete 8192 IQ blocks.

The alignment start address for files 1 and 2 are (7000+8013) and 7000 respectively. The 7000 offset is included within both cor_tim2 and f_align2.

The example relevant commands are,

~/Desktop/Data > ./f_align2 aa01.bin aa01b.bin 242 8013
~/Desktop/Data > ./f_align2 aa02.bin aa02b.bin 242 0
This will produce two files of the same length and virtually data clock synchronised. This is demonstrated re-running cor_tim2 with the new data files as shown in Figure A2.

~/Desktop/Data > ./cor_tim2 aa01b.bin aa02b.bin ff.txt 512 8

No. Input Bytes = 3964928 No. of IQ Samples=65536

Block
Sample Corr Offset Corr Offset

Size
Width
 Peak1 1 on 2 Peak2 2 on 1

8192
 512
 0.756
 0 0.756 0

No IQ amplitudes cross-correlated: = 7679

8192
 512
 0.756
 0 0.756 0

No IQ amplitudes cross-correlated: = 15871

8192
 512
 0.756
 0 0.756 0

No IQ amplitudes cross-correlated: = 24063

8192
 512
 0.756
 0 0.756 0

No IQ amplitudes cross-correlated: = 32255

8192
 512
 0.756
 0 0.756 0

No IQ amplitudes cross-correlated: = 40447

8192
 512
 0.756
 0 0.756 0

No IQ amplitudes cross-correlated: = 48639

8192
 512
 0.756
 0 0.756 0

No IQ amplitudes cross-correlated: = 56831

8192
512
 0.756 0 0.756 0

No IQ amplitudes cross-correlated: = 65023

Infile1=aa01b.bin Infile2=aa02b.bin Outfile=ff.txt No Samples=512

Figure A2 COR_TIM Response - Aligned Files

4.4.3 Rot_Vec – rotates I/Q components in phase or frequency

The command format is:-
rot_vec <file_In> <file_Out> <Phase (rads)> <0/1>

For adjusting the phase or frequency of IQ data in RTL .bin files. The phase is set as decimal radians/per binfile IQ sample. The final command entry is 0 for a fixed phase increment for each sample or 1 for a progressive increment multiplier based on the IQ pair position number.

Software Link:

http://www.y1pwe.co.uk/RAProgs/NewSW4.zip
Compiling Osmocom rtl_sdr Tools:

http://www.y1pwe.co.uk/RAProgs/Compiling rtl files.doc
References

1. http://sdr.osmocom.org/trac/wiki/rtl-sdr
Final Note:

The software freely described in this document comes with no guarantees and is offered at potential users own risk

Peter W East. Issue 4 March 2017

* RTL tool rtl_sdr2 has been modified for Linux by GM Gancio to enable recording of very large (>2GB) data files and included in the Software Link to 'NewSW4.zip' at the end.

PAGE
10

