A Learning Algorithm for Nulling RFI in Pulsar Data

Peter East

Introduction

Pulsar data measurements are often corrupted by radio frequency interference (RFI) from a number of potential sources. It is a well-recognized problem for radio astronomers and quite complicated mitigation solutions have been developed1,2. RFI can occur as broadband amplitude spikes typical of motor ignition sources or spectral lines from power supplies, mobile telephones or digital TV stations. If these can be identified and occupy small regions of the data, then nulling or noise substitution are a useful techniques for mitigating RFI obscuration of pulsar pulses. Pulsar data recorded from SDRs is commonly digitized in I/Q sample form. The digitized data can be divided spectrally before square-law detection and band-limited prior to folding the data to recover the pulsar pulse. If de-dispersion is necessary, this is carried out on either the raw I/Q samples or suitably delaying filter banks or digitized spectrum bins, prior to combining detected bands. There are various ways of identifying and reducing the effects of RFI components in pulsar data but in this note, a simple automatic method is described which adapts itself to the detected data allowing a threshold to be defined. Above this level, significant RFI can be removed from the data so optimizing the eventual signal-to-noise ratio for pulsar recovery.

The Problem

Figures 1 and 2 illustrate amplitude-time and corresponding amplitude-spectrum plots of a 2 minute 131 k sample section of RTL SDR collected pulsar data in a relatively benign RFI environment. Pulsar data is a small fraction of the data amplitude and not visible at this scale. In poor scenarios, Figure 1 amplitude spikes may be multiple in bursts, relatively larger and more frequent. Similarly, for Figure 2 spectral interference components - in addition these could be broader and/or harmonically related. Since data records may be of arbitrary amplitude and of considerable duration, manually locating and nulling them is not a practical short-term option. On the positive side, the detected time and frequency data is known to be mainly noise-like and of a single (normally positive) polarity and include a mean DC offset. These properties are exploited in this exercise.

[image: image16.emf]

Search Algorithm

Detected D ata Blocks In

Data Blocks O ut

Threshold

Figure 1. Detected Data Amplitude versus Time Record

[image: image2.png]Amp.

Frequency

Figure 2. Detected Data Amplitude Spectrum

The RFI mitigation requirement can be simply stated:

Ignore all RFI components, locate the base noise, calculate its mean and rms, set a threshold at say 6 times the rms level above the data mean and finally null the RFI components above this level by setting their amplitudes to the data mean.

This may seem illogical as the leading requirement implies the final blanking has already been done. However, by an iterative learning process this task can be quickly realized by the software algorithm described below.

Where RFI is significant in duration, Reference 1 suggests that instead of nulling RFI, it is replaced by Gaussian noise of the base noise standard deviation.

An Automatic Data Adaptive Solution

The solution adopted here is based on an iterative weighted histogram approach to determine the limits of the base noise. This may be followed by performing a least-squares fit to the noise data to find the running mean together with calculating the noise base root-mean-square (rms) deviation. The final action is to set a threshold equal to (say) 6 times the rms above the mean; above this threshold level, RFI deviations are reduced to the local mean value. The resulting data is then suitable for optimal band-limiting and folding to recover the pulsar pulse.

The algorithm sequence is,

1. Firstly, pass through the data to find its maximum value.

2. Multiply the maximum value by a gain factor (say G = 10) and check by counting samples that all the data is less than this value - first point in Figure 3(a)

3. Divide the window factor by a second factor (say F = √2) and again check all the data is less than the new window value - second point in Figure 3(a).

4. Repeat dividing the window value by the second factor F, k further times where k<50 to complete plot Figure 3(a). The roll-off point indicates when the window starts to become smaller than the peak noise and noise peaks are being excluded.

5. To find the base peak noise height we multiply the (a) plot by the division power value k and apply a peak search algorithm to find the optimum value for k and the corresponding window size to select useful data (in this case, k = K = 32 and the optimum window size = 0.012 amplitude units.

[image: image3.png]100

Bin 0
Fill %

KxBin0
Fill %

(a)

(b)

Figure 3. Weighted Histogram Search on Figure 2 Spectrum Data
The adaptive search process described above works well on positive noise data, either lightly or heavily corrupted by RFI spikes or bursts and is independant of most noise distributions. The final phase of this learning process is to extract the data samples within the base noise limits. From this selected data we can determine the mean and rms deviation values in order to set a threshold to null RFI deviations. If the data is relatively flat this is a simple process. However, if the data mean exhibits drift or band curvature it may be necessary to apply the least-squares fit to the final windowed data to more accurately determine the data running mean and rms for setting the data threshold.

The key component programs are listed in the Appendix.

Time Series and Spectrum RFI Nulling

A comparison of Figure 1 time series plot and Figure 2 spectrum plot of the same data shows that in this case, RFI is more apparent in the spectrum plot and it may be concluded that removal of these RFI lines may be of greater benefit. To exploit this benefit it is necessary to convert the RFI reduced block spectrum back into a time series, then serially recombine the modified blocks for application of the folding algorithm. Unfortunately a magnitude (real) spectrum seriously degrades the eventual pulsar signal-to-noise ratio due to the secondary magnitude detection process, but is useful for this exercise for indicating which complex spectrum bins are to be blanked in the data blocks. Inverse Fourier transforming the nulled complex spectrum provides an RFI-blanked time series that can be added serially with other data blocks to achieve the stated aim. The differences of the two time-series/spectrum processes is clarified in Figure 4.

[image: image1.png]Time

[image: image15.emf]

Magnitude

Search Algorithm

Detected D ata Blocks In

Data Blocks O ut

Threshold

FFT

Complex

I FFT

 (a)

(b)

Figure 4. Comparison of Time Series (a) and Spectrum (b) RFI Mitigation Processes
For the spectrum process, if the pulsar topocentric period is known accurately, then it is not nessary to fully reconstitute the RFI nulled output time series. As described in the Reference 3, if the data blocks are timed to contain the same number of pulsar rotation periods and are synchronised to the pulsar period frame, the spectrum data blocks can be coherently summed without any loss of information.

The reconstituted time series blocks can then be folded normally and alternatively, the summed spectrum blocks, folded similarly after inverse Fourier transforming.

If the RFI amplitude modulations are extensive then some underlying pulsar pulses may be nulled over the blanked regions and RFI removal not so effective in improving the final folding result. Warning of this possibility is given by the quality measure (M/S) discussed in the Appendix. On the other hand, spectrum RFI spur nulling can affect the final result if nulled RFI frequencies happen to coincide with the pulsar pulse train harmonic lines. Nulling can always be replaced by random data of the same rms deviation to minimise the chance of spurious echo responses or artifacts in the opposite Fourier plane.

Results

Figures 5a and 5b show the result of applying the search algorithm to the time and spectral data of Figures 1 and 2. The green dashed line indicates the least-squares mean linear fit and the blue dashed line is the data threshold, set 6 times the noise rms value above the calculated running mean. Above this line in the frequency magnitude plot, all frequency complex data are automatically nulled to zero. For time-series block data, the data is nulled to the local mean value.

[image: image4.png]Time

Figure 5a. Figure 1 Time Series Data after Applying the Learning Algorithm

[image: image5.png]Amp.

Frequency

Figure 5b. Figure 2 Spectrum Data after Applying the Learning Algorithm

In Figure 6 the complex spectrum of the nulled magnitude spectrum data from Figure 5 has been converted back to its time series by the inverse Fourier transform for comparison with the raw time series data of Figure 1. This shows that the full process described does not corrupt the original data apart from nulling RFI amplitude spikes and RFI spectral lines. The ratio of the time series after and before the algorithm of the data presented is, 0.968 showing approximately a 3% reduction, in apparent system noise temperature after removal of both amplitude spikes and RFI spectral lines.

[image: image6.png]

Figure 6. Inverse FT of Figure 5. Complex Spectrum (blue +) overlaid on Figure 1. Data (red lines)
A second, completely different example for comparison is shown in Figure 7 which plots a 32-point FFT spectrum of Airspy SDR data with a significant broad RFI peak in the band centre.

[image: image7.png]15

Amp.

B8

Figure 7. 32-point Spectrum Data before and after Applying the Learning Algorithm
The same software program was used as before with no adjustment and demonstrates the ruggedness of the algorithm in automatically adapting to the data and finding the useful base noise, allowing RFI to be automatically removed. Note the scale change between the plots - for ease of comparison the data has not been nulled.

Conclusions

The processes described can be implemented in a high level language to automatically null RFI in detected pulsar data. On very large files, it is sensible to split the data into manageable sections/blocks. This has the advantage of accommodating any drift in the data mean due to temperature or amplifier chain stability effects. Although this demonstration used real data that is relatively RFI-benign, experiments to distort the noise distribution and adding simulated random RFI spurs have proved to be extremely well accommodated.

In the iterative search process, two factors have been pre-chosen. The first is the gain factor, G to multiply the data maximum value by (10, suggested) and F the window step division ratio(√2, suggested). The first is not too important and the value is chosen so that at least a few iterations are ensured on unadulterated pure Gaussian noise. The step division ratio F is a trade-off between fine accuracy of base noise peak detection and ensuring a reasonable limit on the number of iterations (maximum set at 50, see Appendix). In practice, very accurate final window size does not significantly affect the threshold setting for RFI removal and minimally affects the final folding performance.

This exercise has shown that modest RFI mitigation is worthwhile; even the relatively benign environment data used gave a useful 3% reduction in noise power equivalent to a 3% reduction in the effective system noise temperature.

References

1. Ramey E. Joslyn N. Prestage R. Lam M. Hawkins L. Blattner T. Whitehead M. "Real-time RFI Mitigation in Radio Astronomy" (2019). Senior Honors Papers / Undergraduate Theses. 5.

 https://openscholarship.wustl.edu/undergrad_etd/5

2. Kesteven M. Manchester R. Brown A. Hampson G. "RFI Mitigation for Pulsar Observations". https://pos.sissa.it/107/023/pdf
3. East PW. "Spectrum Techniques for Improving Low SNR Pulsar Detection". Journal of the Society of Amateur Radio Astronomers. March-April 2019. p21. http://www.y1pwe.co.uk/RAProgs/SpectrumCombiningM.doc

Appendix. Outline Programs

The window search program is listed below. The initial 'window' is made equal to data maximum value multiplied by the gain factor G = 10. The input data may initially be a single column but for this application, the data samples need to be numbered; the matrix column datan,0 contains the measured data and the column datan,1 configured to store the data n sample number. The exponent variable value k can take the integer range from zero to 50 for example.

[image: image8.png]histog(data , window , samples, k) = | result <~ 0
for ne0..samples— 1
window

(2

result ¢ result + 1 if datan o <

result-k
Samples.

Figure A1. Histogramming function

The output from this program is scanned to find the k value, K corresponding to its maximum. Given K, the optimum window size to contain just the base noise is calculated from,

[image: image9.wmf]K

window

initial

W

2

=

A1

The number of data samples, M within this window is given by the histog program, setting k = 0, (i.e.
[image: image10.wmf])

0

,

,

,

(

samples

W

data

histog

M

=

). If S is the total number of samples in the data block, then a quality measure of the operation is given by, M/S.

The next task is to scan the original data again to extract only the data samples and data sample numbers within the final window W for processing with the least-squares fit algorithm. The data extraction program is listed in Figure A2.

The final windowed data and sample number are represented by, dat_seln,0, (yn) and dat_seln,1, (xn) respectively. The simple data mean and rms are calculated from M and dat_seln,0 , however, dat_seln,1 is required in addition to apply the least-squares fit algorithm.

[image: image11.png]data_select(data, W, samples) = |n ¢ 0
for ne0..samples— 1
i 0% datag o< W
dat_selnn, 0 < datan, o
dat_sclnn, 1 ¢ datan 1
mem+l
dat_sel

Figure A2. Windowed Data Selection Program

The least-squares algorithm process provides a running mean and is listed in Figure A3.

[image: image12.wmf]X

0

M

1

-

n

x

n

M

å

=

:=

Y

0

M

1

-

n

y

n

M

å

=

æ

ç

ç

è

ö

÷

÷

ø

:=

m

0

M

1

-

n

x

n

X

-

(

)

y

n

Y

-

(

)

×

å

=

0

M

1

-

n

x

n

X

-

(

)

x

n

X

-

(

)

×

å

=

:=

c

Y

m

X

×

-

:=

y

m

x

×

c

+

:=

Figure A3. Least-Squares Linear Fit Process

The rms deviation is calculated from,
[image: image13.wmf](

)

å

-

=

-

-

=

1

0

2

M

n

n

n

M

c

mx

y

rms

A2

Data thresholding and nulling is then described by,

[image: image14.png]thres(data , samples thres,, mean , rms) := | for n€0..samples — 1
daton ¢ datan o i datan, < mean +6-ms
daton ¢ mean otherwise

dato

Figure A4. Thresholding Process
This application assigns all data above the threshold (mean+6*rms) to the data mean value (mean = Y , from Figure A3). To replace by noise, the 'otherwise' mean in Fig. A4 should be replaced by, Y+rand(rms), where rand(rms) is zero-mean Gaussian noise with a standard deviation of rms from Equation A2.

PW East. February 2020

_1643093404

_1643204495

_1643287161

_1643523698.unknown

_1643526619

_1643438572.bin

_1643204820

_1643204021

_1642834911

_1642843894

_1642793570

_1642831306.unknown

_1642787236.unknown

_1642793366

